Arrowhead Regional Medical Center

2014 Consumer Confidence Report

Esta informe contiene informacion muy importante sobre su agua beber.

Traduzcalo o hable con alguien que lo entienba bien.

To our water system users:

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the quality of water and services we have supplied to you over the past year. Our goal is, and always has been, to provide to you a safe and dependable supply of drinking water. Our water source is one groundwater well located on the East side of our facility, blended with water purchased from the City of Colton. This report shows the quality of our produced and distributed water and what it means. Please contact us if you have any questions.

Arrowhead Regional Medical Center routinely monitors for contaminants in your drinking water according to Federal and State laws. The enclosed table shows the results of produced and distributed water monitoring for the period of January 1 to December 31, 2014. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It is important to remember that the presence of these contaminants does not necessarily pose a health risk.

Under our Water Supply Permit with the County of San Bernardino, Department of Environmental Health Services, water quality monitoring is completed as needed. These tests may include microbial contaminants, inorganic chemical contaminants, and organic chemical contaminants. Every effort is made to insure that your drinking water meets or exceeds all Federal and State requirements. Regulations require the testing of the water to ensure that it is safe to drink.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the US Environmental Protection Agency's (USEPA) Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and in some cases, radioactive material, and can pickup substances resulting from the presence of animal or human activity.

Contaminants that may be in source water include:

Microbial contaminants, such as viruses and bacteria, that come from sewage treatment plants, septic systems, livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban storm water runoff, industrial or domestic waste water discharges, oil and gas production, mining or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Please call our office if you have questions.

For additional information contact:

Mr. Tim Plumb 400 N. Pepper Colton, CA. 92324 (909) 580-0034

Terms and Abbreviations

In the following Test Result Table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

- Non-Detects (ND) laboratory analysis indicates that the constituent is not present.
- Parts per million (ppm) or Milligrams per liter (mg/l) one part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion (ppb) or Micrograms per liter (ug/l) one part per billion corresponds to one minute in 2,000 years or a single penny in \$10,000,000.
- Picocuries per liter (pCi/L) picocuries per liter is a measure of the radioactivity in water.
- Million fibers per Liter (MFL) million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.
- Nephelometric Turbidity Unit (NTU) nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- Treatment Technique (TT) A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.
- Maximum Contaminant Level (MCL) the "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- Maximum Contaminant Level Goal (MCLG) the "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Public Health Goal or PHG— the level of a contaminant in drinking water below which there is no known or expected risk to health. The California Environmental Protection Agency sets PHGs.
- Regulated Action Level (AL) The concentration of a contaminant, which, if exceeded, triggers treatment, or other requirements, which a water system must follow.
- Public Drinking Water Standards (PDWS) MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
- N/A No standard available.

Issues to Know About:

NITRATE IN DRINKING WATER

Nitrate in drinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

PERCHLORATE IN DRINKING WATER

Perchlorate has been shown to interfere with uptake of iodide by the thyroid gland, and to thereby reduce the production of thyroid hormones, leading to adverse effects associated with inadequate hormone levels. Thyroid hormones are needed for normal prenatal growth and development of the fetus, as well as for normal growth and development in the infant and child. In adults, thyroid hormones are needed for normal metabolism and mental function.

LEAD IN DRINKING WATER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and plumbing fixtures. Water purveyors are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When water has been sitting for several hours, you can minimize the potential for lead exposure by flushing the tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or http://www.epa.gov/safewater/lead.

ARROWHEAD REGIONAL MEDICAL CENTER

PRODUCTION MONITORING TABLE FOR JANUARY 1 - DECEMBER 31, 2014									
PRIMARY STANDARDS - Mandatory, Health-Related Standards by the State of California Department of Public Health									
MICROBIOLOGICAL CONTAMINANTS Total Coliform Bacteria									
	Violation	Units	MCLG	PHG	MCL	RANGE	# of Mo	nths Positive	Likely Source of Detected Constituent
Col. Bac.(% Test Positive)	No	%+	0	0	1	0	0	24 Collected	Naturally present in the environment
No. of Acute Violations©	0	Units	0	0	0	0	0		
RADIOACTIVE CONTAMINANTS									
	Violation	Units	MCLG	PHG	MCL	RANGE	LEVEL	Date	Likely Source of Detected Constituent
Gross Alpha Activity	No	pCi/l	0	n/a	15	3.8-5.9	4.8	4/28-11/10/10	Erosion of natural deposits.
INORGANIC CONTAM	INANTS								
Nitrate (as NO3)	No	mg/l	45	45	45	14-35	27	1/14-12/11/14	Runoff/ leaching from fertilizer leaching
(Distribution System)									from septic tanks and sewage; erosion
Hexavalent Chromium	No	ug/l	0.02	0.02	10	2.9	2.9	10/10/2014	Factory or Erosion of natural deposits.
LEAD + COPPER - Mai	ndatory,	Health-	Related	Standards	by the	State of C	Californ	nia Departme	nt of Public Health
			No. of		90th	No. of			
			Samples	Activation	Percent	Samples			
	Violation	Units	Collected	Level	Level	Exceeding	MCLG	Date	Likely Source of Detected Constituent
Lead	No	ug/l	10	AL=15	ND	0	2	10/2/2013	Corrosion of household water systems:
									industrial manufacturers; erosion
Copper	No	mg/l	10	AL=1.3	0.135	0	0.3	10/2/2013	Corrosion of household plumbing;
									erosion of natural deposits; leaching.
DISINFECTION BYPR	ODUCTS	S. DISIN	VECTA	NT RESID	UALS.	AND DISI	NEEC	TION BYPRO	DDUCT PRECURSORS
	Violation	_	MCLG	PHG	The Real Property lies, the Re	RANGE	LEVEL		Likely Source of Detected Constituent
				n/a	_	ND			Byproduct of drinking water chlorination
ITTHMs	IIVO	lua/l	In/a			IND	ND	8/28/2014	
TTHMs HAA5	No No	ug/l ug/l	n/a n/a		_		ND ND		
НАА5	No	ug/l	n/a	n/a	60	ND	ND	8/28/2014	Byproduct of drinking water chlorination
	No ARD - Ae	ug/l esthetic	n/a Standard	n/a ds Establis	60 shed by	ND the State	ND of Cal	8/28/2014 ifornia Depai	Byproduct of drinking water chlorination tment of Public Health
HAA5 SECONDARY STANDA	No RD - Ae Violation	ug/l esthetic Units	n/a Standard MCLG	n/a ds Establis PHG	60 shed by MCL	ND the State RANGE	of Cal	8/28/2014 ifornia Depar Date	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent
HAA5 SECONDARY STANDA Chloride	No RD - Ae Violation No	ug/l esthetic Units mg/l	n/a Standard MCLG n/a	n/a ds Establis PHG n/a	60 shed by MCL 500	ND the State RANGE 12	of Cal	8/28/2014 ifornia Depai Date 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits
HAA5 SECONDARY STANDA Chloride Sulfate	No ARD - Ae Violation No No	ug/l esthetic Units mg/l mg/l	n/a Standard MCLG n/a n/a	n/a ds Establis PHG n/a n/a	60 shed by MCL 500	the State RANGE 12 38	of Cal LEVEL 12 38	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance	No ARD - Ae Violation No No No	ug/I esthetic Units mg/I mg/I umhos/cm	n/a Standard MCLG n/a n/a n/a	n/a ds Establis PHG n/a n/a	60 shed by MCL 500 500	the State RANGE 12 38 540	of Cal LEVEL 12 38 540	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water
Chloride Sulfate Specific Conductance Total Dissolved Solids	No ARD - Ae Violation No No No No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l	n/a Standard MCLG n/a n/a	n/a ds Establis PHG n/a n/a	60 shed by MCL 500	the State RANGE 12 38	of Cal LEVEL 12 38	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance	No ARD - Ae Violation No No No No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l	n/a Standard MCLG n/a n/a n/a n/a	n/a ds Establis PHG n/a n/a n/a n/a	60 shed by MCL 500 500	ND the State RANGE 12 38 540 340	ND of Cal LEVEL 12 38 540 340	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water
Chloride Sulfate Specific Conductance Total Dissolved Solids	No ARD - Ae Violation No No No No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l	n/a Standard MCLG n/a n/a n/a n/a	n/a ds Establis PHG n/a n/a	60 shed by MCL 500 500 1600	ND the State RANGE 12 38 540 340 RANGE	of Cal LEVEL 12 38 540 340	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water
Chloride Sulfate Specific Conductance Total Dissolved Solids	No ARD - Ae Violation No No No No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l	n/a Standard MCLG n/a n/a n/a n/a	n/a ds Establis PHG n/a n/a n/a n/a	60 shed by MCL 500 500 1600	ND the State RANGE 12 38 540 340	of Cal LEVEL 12 38 540 340	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011 Date	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT	No ARD - Ae Violation No No No No Violation Violation	ug/l esthetic Units mg/l mg/l umhos/cm mg/l VTS Units	n/a Standard MCLG n/a n/a n/a n/a MCLG	n/a ds Establis PHG n/a n/a n/a n/a PHG	60 shed by MCL 500 500 1600 1000	ND the State RANGE 12 38 540 340 RANGE 19 80	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011 Date	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT Sodium	No ARD - Ae Violation No No No No Violation No No No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l VTS Units mg/l	n/a Standard MCLG n/a n/a n/a n/a MCLG n/a	n/a ds Establis PHG n/a n/a n/a n/a PHG n/a	60 shed by MCL 500 1600 1000	ND the State RANGE 12 38 540 340 RANGE 19	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011 Date 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits No Standard for MCL
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT Sodium Calcium Magnesium Potassium	No ARD - Ae Violation No No No No Violation No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l VTS Units mg/l mg/l	n/a Standard MCLG n/a n/a n/a n/a n/a n/a n/a	n/a PHG n/a n/a n/a n/a n/a n/a n/a n/a	60 shed by MCL 500 1600 1000 MCL n/a n/a	ND the State RANGE 12 38 540 340 RANGE 19 80	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80 9.9	8/28/2014 ifornia Depar Date 9/28/2011 9/28/2011 9/28/2011 Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits No Standard for MCL No Standard for MCL
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT Sodium Calcium Magnesium	No ARD - Ae Violation No No No No Violation No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l VTS Units mg/l mg/l mg/l	n/a Standard MCLG n/a n/a n/a n/a n/a n/a n/a n/a n/a	n/a ds Establis PHG n/a n/a n/a n/a PHG n/a n/a n/a	60 shed by MCL 500 500 1600 1000 MCL n/a n/a n/a	RANGE 12 38 540 340 RANGE 19 80 9.9	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80 9.9 2.8	8/28/2014 ifornia Depai Date 9/28/2011 9/28/2011 9/28/2011 Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits No Standard for MCL No Standard for MCL No Standard for MCL
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT Sodium Calcium Magnesium Potassium	No ARD - Ae Violation No No No Violation No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l VTS Units mg/l mg/l mg/l mg/l	n/a Standard MCLG n/a n/a n/a n/a n/a MCLG n/a n/a n/a	n/a ds Establis PHG n/a n/a n/a n/a PHG n/a n/a n/a n/a n/a n/a n/a	60 shed by MCL 500 1600 1000 MCL n/a n/a n/a n/a	RANGE 12 38 540 340 RANGE 19 80 9.9 2.8	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80 9.9 2.8 230	8/28/2014 ifornia Depai Date 9/28/2011 9/28/2011 9/28/2011 Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits Who Standard for MCL No Standard for MCL No Standard for MCL No Standard for MCL No Standard for MCL
Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT Sodium Calcium Magnesium Potassium Total Hardness (CaCO3)	No ARD - Ae Violation No	ug/l esthetic Units mg/l umhos/cm mg/l VTS Units mg/l mg/l mg/l mg/l mg/l mg/l	n/a Standard MCLG n/a n/a n/a n/a n/a MCLG n/a n/a n/a n/a n/a n/a n/a	n/a SESTABILIS PHG n/a n/a n/a n/a PHG n/a n/a n/a n/a n/a n/a n/a n/a n/a	60 shed by MCL 500 500 1600 1000 MCL n/a n/a n/a n/a n/a n/a	RANGE 12 38 540 340 RANGE 19 80 9.9 2.8 230	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80 9.9 2.8 230 160	8/28/2014 ifornia Depai Date 9/28/2011 9/28/2011 9/28/2011 Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits Who Standard for MCL No Standard for MCL
Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT Sodium Calcium Magnesium Potassium Total Hardness (CaCO3) Total Alkalinity (CaCO3)	No ARD - Ae Violation No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l VTS Units mg/l mg/l mg/l mg/l mg/l mg/l pH	n/a Standard MCLG n/a n/a n/a n/a MCLG n/a n/a n/a n/a n/a n/a n/a n/	n/a ds Establis PHG n/a n/a n/a n/a PHG n/a	60 shed by MCL 500 1600 1000 MCL n/a n/a n/a n/a n/a n/a n/a n/a	RANGE 12 38 540 340 RANGE 19 80 9.9 2.8 230 160	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80 9.9 2.8 230 160	8/28/2014 ifornia Depai Date 9/28/2011 9/28/2011 9/28/2011 Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits No Standard for MCL
HAA5 SECONDARY STANDA Chloride Sulfate Specific Conductance Total Dissolved Solids UNREGULATED CONT Sodium Calcium Magnesium Potassium Total Hardness (CaCO3) Total Alkalinity (CaCO3) pH	No ARD - Ae Violation No	ug/l esthetic Units mg/l mg/l umhos/cm mg/l VTS Units mg/l mg/l mg/l mg/l mg/l mg/l pH	n/a Standard MCLG n/a n/a n/a n/a MCLG n/a n/a n/a n/a n/a n/a n/a n/	n/a ds Establis PHG n/a n/a n/a n/a PHG n/a	MCL 5000 10000 MCL n/a n/a n/a n/a n/a n/a n/a n/a n/a	RANGE 12 38 540 340 RANGE 19 80 9.9 2.8 230 160 7.8	ND of Cal LEVEL 12 38 540 340 LEVEL 19 80 9.9 2.8 230 160	8/28/2014 ifornia Depai Date 9/28/2011 9/28/2011 9/28/2011 Date 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011 9/28/2011	Byproduct of drinking water chlorination tment of Public Health Likely Source of Detected Constituent Runoff / leaching from natural deposits Runoff / leaching from natural deposits Substances that form ions if in water Runoff / leaching from natural deposits No Standard for MCL

During Calander Year 2014, Arrowhead Regional Medical Center (ARMC) purchased 93% of the water delivered to the distribution system from the City of Colton, and produced 7% with the onsite well. The ARMC onsite well produces water that exceeds the MCL for Nitrate and Perchlorate. The production water from this well is blended with water supplied by the City of Colton. Water distributed to the system has an average Nitrate level of 25 mg/L which is below the MCL. The ARMC well water is filtered through an ion exchange process for Perchlorate prior to distribution. After this process, water delivered to the distribution system has a non detectable level for Perchlorate.

CITY OF COLTON - WATER DEPARTMENT

		MON	ITORING	TABLE	FOR JA	NUARY	1 - DE	CEMBER	31, 2014
Contaminant	Violation	The same of the sa	ST RESUL	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, where the Owner, where the Owner, which is the Owner, where the Owner, which is the Ow	UNIT	STATE	STATE	YEAR	LIKELY SOURCE OF CONTAMINANT
Contaminant	Y/N	Minimum	Maximum	Average	MEASURE	MCL	PHG MRDLG	TESTED*	EMEET OOSTOL OF OSTON MINION
INORGANIC CHEMICALS	- PRIMA	RY STANE	ARDS			MINDL	WIRDLG		
Fluoride	N	0.23	0.67	0.43	mg/l	2	1	2014	Erosion of natural deposits, water additive for dental hygiene discharge from fertilizer and aluminum factories
Nitrate (as NO3)	N	0	34	9	mg/l	45	45	2014	Runoff / leaching from fertilizer use, septic tanks, sewage, and erosion of natural deposits
Nitrate+Nitrite as Nitrogen	N	0	7.6	2	mg/l	10	10	2014	Runoff / leaching from fertilizer use, septic tanks, sewage,
CHEMICAL PARAMETERS					1 mg/r	10	10	2014	land erosion of natural deposits
Chloride	N	6.2	42	14	mg/l	500	NS	2014	Runoff / leaching from natural deposits; seawater influence
Corrosivity (Langlier Index)**	N	0.34	0.61	0.49	units	NC	NS	2014	Natural or industrial-influenced balance of hydrogen, carbon oxygen in water, affected by temperature and other factors
Aggressiveness Index ***	N	12.15	12.4	12.26	units	NS	NS	2014	oxygen in water, unecede by temperature and other ractors
Iron	N	0	270	22.5	ug/l	300	NS	2014	Leaching from natural deposits
Manganese	N	0	51	18	ug/l	50	NS	2014	Leaching from natural deposits
Specific Conductance	N	410	740	501	umhos	1600	NS	2014	Substances that form ions in water; seawater influence
Sulfate	N	25	110	52		500	NS	2014	Runoff / leaching from natural deposits, industrial wastes
Total Dissolved Solids					mg/l				
PHYSICAL PARAMETERS	N	250	490	316	mg/l	1000	NS	2014	Runoff / leaching from natural deposits
Odor - Threshold	N	1	3	1.2	TON	3	NS	2014	Naturally occurring organic materials
рН	N	7.6	7.9	7.8	units	NS	NS	2014	reacting organic materials
Turbidity	N	0	3.8	0.54	NTU	5	N/A	2014	Turbidity is monitored because it is a good indicator of water quality. High turbity can hinder disinfectant effectiveness.
RADIONUCLIDES			1 0.0	0.01	1 1110		1 1407	2014	Ingiliarity daritimos distributantesessoress
Gross Alpha Particle Activity	N	0	6.2	3.6	pCi/L	15	NS	2013	Erosion of natural deposits
Radon 222	N	229	458	333.3	pCi/L	NS	NS	2000	Erosion of natural deposits
Uranium	N	0	9	1.3	pCi/L	20	0.43	2013	Erosion of natural deposits
VOLATILE ORGANIC CHE	MICALS (VOC's)	,						
Tetrachloroethylene	N	ND	ND	ND	ug/i	5	0.06	2014	Leaching from PVC pipes, discharge from factories, dry cleaners and auto shops (metal degreaser)
ADDITIONAL PARAMETE	RS								
Alkalinity	N	150	240	190	mg/i	NS	NS	2014	
Bicarbonate Alkalinity	N	190	290	230	mg/l	NS	NS	2014	
Calcium	N	52	95	66	mg/l	NS	NS	2014	
Total Hardness	N	170	300	220	mg/l	NS	NS	2014	
Magnesium	N	7	14	10	mg/l	NS	NS	2014	
Potassium	N	2	4	3	mg/l	NS	NS	2014	
Sodium	N	12	59	24	mg/l	NS	NS	2014	
Boron	N	0	180	47	mg/l	NS	NS	2014	
DISTRIBUTION SYSTEM									
Microbiological-Total Coliform Bacteria	N	ND	ND	ND	Presense of	f coliform to		2014	No durally report in the confirm
Total Trihalomethanes	N	0	9.5	9.5				2014	Nauturally present in the environment
Haloacetic Acids	N	0	1.5	1.5	ug/l	60	NS NS	2014	By-product of drinking water chlorination
Chlorine	N	0.82	1.05	0.91	ug/l	4	4	2014	By-product of drinking water chlorination
REGULATED CONTAMINA			1.05	0.91	mg/l	4	1 4	2014	Drinking water disinfectant added for treatment
Perchlorate	N	0	2.5	0.2	ug/l	6	1	2014	Component of explosives, fireworks, matches, and solid rocket fuels.

LEAD AND COPPER

The Lead & Copper Rule became effective in 1993. The City of Colton has performed eight rounds of sampling. The last round was performed in August 2013. Next round is scheduled for 2016. All samples are taken from the first draw of morning water. The first two rounds were from 60 single-family residences with copper pipe with lead solder installed since 1982. The 1998, 2001, 2004,2007, 2010 & 2013 sampling included only 30 single-family residences due to favorable results in the previous sampling round The next round is scheduled for August 2016. The 2013 results were:

Tille Hertt Femilia le compandio d'il	or riagant zo io. Illo zo	TO TOOUTS WOTC.			
Contaminant	90th	Unit	MCL	PHG	LIKELY SOURCE OF CONTAMINANT
	Percentile Result	Measurement			
LEAD	0	ug/l	AL 15	2	Internal corrosion of household plumbing systems, discharge
					from industrial mfg, erosion of natural deposits
COPPER	180	ug/l	AL 1300	300	Internal corrosion of household plumbing
					systems, erosion of natural deposits.